Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 438: 138004, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37983995

RESUMO

Fusarium verticillioides, a major fungal pathogen of maize, produces fumonisins, mycotoxins of global food safety concern. Control practices are needed to reduce the negative health and economic impacts of fumonisins. Therefore, we investigated volatile organic compounds (VOCs) emitted by fumonisin-producing (wild-type) and nonproducing (mutant) strains of F. verticillioides. VOC emissions were analyzed by gas chromatography-mass spectrometry following inoculation of maize kernels, and fumonisin accumulation was analyzed by high-performance liquid chromatography. Mutants emitted VOCs, including ethyl 3-methylbutanoate, that the wild type did not emit. In particular, ANOVA analysis showed significant differences between mutants and wild type for 4 VOCs which emission was correlated with absence of fumonisins. Exogenous ethyl 3-methylbutanoate reduced growth and fumonisin production in wild-type F. verticillioides, showing its potential in biocontrol. Together, our findings offer valuable insights into how mycotoxin production can impact VOC emissions from F. verticillioides and reveal a potential biocontrol strategy to reduce fumonisin contamination.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Compostos Orgânicos Voláteis , Fumonisinas/análise , Fusarium/genética , Zea mays/química
2.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555197

RESUMO

Volatile organic compounds (VOCs) are secondary metabolites of varied chemical nature that are emitted by living beings and participate in their interactions. In addition, some VOCs called bioactive VOCs cause changes in the metabolism of other living species that share the same environment. In recent years, knowledge on VOCs emitted by Aspergillus flavus, the main species producing aflatoxin B1 (AFB1), a highly harmful mycotoxin, has increased. This review presents an overview of all VOCs identified as a result of A. flavus toxigenic (AFB1-producing) and non-toxigenic (non AFB1-producing) strains growth on different substrates, and the factors influencing their emissions. We also included all bioactive VOCs, mixes of VOCs or volatolomes of microbial species that impact A. flavus growth and/or related AFB1 production. The modes of action of VOCs impacting the fungus development are presented. Finally, the potential applications of VOCs as biocontrol agents in the context of mycotoxin control are discussed.


Assuntos
Aspergillus flavus , Compostos Orgânicos Voláteis , Aspergillus flavus/metabolismo , Aflatoxina B1 , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo
3.
Microorganisms ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557712

RESUMO

Quorum sensing (QS) is often defined as a mechanism of microbial communication that can regulate microbial behaviors in accordance with population density. Much is known about QS mechanisms in bacteria, but fungal QS research is still in its infancy. In this study, the molecules constituting the volatolomes of the plant pathogenic fungi Fusarium culmorum and Cochliobolus sativus have been identified during culture conditions involving low and high spore concentrations, with the high concentration imitating overpopulation conditions (for QS stimulation). We determined that volatolomes emitted by these species in conditions of overpopulation have a negative impact on their mycelial growth, with some of the emitted molecules possibly acting as QSM. Candidate VOCs related to QS have then been identified by testing the effect of individual volatile organic compounds (VOCs) on mycelial growth of their emitting species. The antifungal effect observed for the volatolome of F. culmorum in the overpopulation condition could be attributed to ethyl acetate, 2-methylpropan-1-ol, 3-methylbutyl ethanoate, 3-methylbutan-1-ol, and pentan-1-ol, while it could be attributed to longifolene, 3-methylbutan-1-ol, 2-methylpropan-1-ol, and ethyl acetate for C. sativus in the overpopulation condition. This work could pave the way to a sustainable alternative to chemical fungicides.

4.
Toxins (Basel) ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34678998

RESUMO

Aspergillus flavus is a phytopathogenic fungus able to produce aflatoxin B1 (AFB1), a carcinogenic mycotoxin that can contaminate several crops and food commodities. In A. flavus, two different kinds of strains can co-exist: toxigenic and non-toxigenic strains. Microbial-derived volatile organic compounds (mVOCs) emitted by toxigenic and non-toxigenic strains of A. flavus were analyzed by solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) in a time-lapse experiment after inoculation. Among the 84 mVOCs emitted, 44 were previously listed in the scientific literature as specific to A. flavus, namely alcohols (2-methylbutan-1-ol, 3-methylbutan-1-ol, 2-methylpropan-1-ol), aldehydes (2-methylbutanal, 3-methylbutanal), hydrocarbons (toluene, styrene), furans (2,5-dimethylfuran), esters (ethyl 2-methylpropanoate, ethyl 2-methylbutyrate), and terpenes (epizonaren, trans-caryophyllene, valencene, α-copaene, ß-himachalene, γ-cadinene, γ-muurolene, δ-cadinene). For the first time, other identified volatile compounds such as α-cadinol, cis-muurola-3,5-diene, α-isocomene, and ß-selinene were identified as new mVOCs specific to the toxigenic A. flavus strain. Partial Least Square Analysis (PLSDA) showed a distinct pattern between mVOCs emitted by toxigenic and non-toxigenic A. flavus strains, mostly linked to the diversity of terpenes emitted by the toxigenic strains. In addition, the comparison between mVOCs of the toxigenic strain and its non-AFB1-producing mutant, coupled with a semi-quantification of the mVOCs, revealed a relationship between emitted terpenes (ß-chamigrene, α-corocalene) and AFB1 production. This study provides evidence for the first time of mVOCs being linked to the toxigenic character of A. flavus strains, as well as terpenes being able to be correlated to the production of AFB1 due to the study of the mutant. This study could lead to the development of new techniques for the early detection and identification of toxigenic fungi.


Assuntos
Aflatoxina B1/metabolismo , Aspergillus flavus/química , Compostos Orgânicos Voláteis/metabolismo , Aspergillus flavus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA